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General  
CADASTER is a project that was granted within the 7th Research Framework Programme of DG 

Research of the European Commission. CADASTER aims at providing the practical guidance to 

integrated risk assessment within REACH by carrying out a full hazard and risk assessment for 

chemicals belonging to four compound classes. The main goal is to exemplify the integration of 

information, models and strategies for carrying out safety, hazard and risk assessments for a selected 

number of compounds within four specific chemical domains. Real hazard estimates will be delivered 

according to the basic philosophy of REACH of minimizing animal testing, costs, and time. CADASTER 

will show how to increase the use of non-testing information for regulatory decision whilst meeting 

the main challenge of quantifying and reducing uncertainty.  

CADASTER has officially started on the 1st of January, 2009. The project officer on behalf of DG 

Research of the European Commission is Dr. Georges Deschamps, the project is coordinated by Dr. 

Willie Peijnenburg (RIVM).  
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Guidance	on	using	QSAR	models	for	

probabilistic	risk	assessment	

Summary 
This document is deliverable 4.2. in the CADASTER project. It provides an overview of current 

guidance for the use of QSARs in risk assessment under REACH, and what has been done within the 

CADASTER project to address gaps in current guidance to facilitate the integration of QSARs in risk 

assessment.  
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1. Introduction 
The REACH regulation advocates the use of non-animal testing methods, but guidance is needed on 

how these methods should be used. The procedures to use alternatives to animal testing include 

methods such as chemical and biological read-across, in vitro results, in vivo information on 

analogues, (Q)SARs, and exposure-based waiving. The concept of Intelligent Testing Strategies (ITS) 

for regulatory endpoints that allow for efficient risk assessment has been outlined to facilitate the 

assessments. The CADASTER projected was initiated by the need to translate the ITS concept into a 

workable, consensually acceptable, and scientifically sound strategy. The optimization of the ITS 

concept should also be applicable within the precautionary principles that are put central in REACH. 

Therefore a main challenge within CADASTER has been to demonstrate the use of non-testing 

information for regulatory decision whilst meeting the main challenge of quantifying and reducing 

uncertainty.  

Industry is primarily made responsible for carrying out the risk assessments, and practical guidance is 

therefore needed on how to apply the elements of the newly derived testing strategies in a 

consistent manner. During the execution of the CADASTER project, guidance for the use of non-

testing methods in the European regulatory context has gone through major improvement. There is 

still a need of distinct application criteria and guidance on how to rigorously address uncertainty. This 

guidance document presents the achievements on the application of QSARs in probabilistic risk 

assessment, explicitly taking account of the inherent uncertainties associated with individual QSAR 

predictions. On the basis of the results obtained, application criteria are presented to aid judgment 

related to the use of QSARs as non-testing information supporting Chemical Safety Assessment.  

A goal with the CADASTER project has been to exemplify the integration of information, models and 

strategies for carrying out safety-, hazard- and risk assessments for large numbers of substances. 

Methods have been derived for assessments made on a chemical class level, making use of the 

chemical domain as defined by molecular descriptors. Operational procedures of the integration of 

QSARs into probabilistic risk assessment have been developed, tested, and disseminated to guide a 

transparent evaluation of hazard and risk of emerging chemicals, explicitly taking account of 

variability and uncertainty in data and in models. 

The purpose with this deliverable is to provide guidance for the integration of QSARs into chemical 

safety assessment, and more specifically in probabilistic risk assessment for which all important 

sources of uncertainties are to be characterized and propagated in the assessment. The structure of 

this report is made to guide the reader to relevant sources of information for the use of QSARs in 

chemical safety assessment. First, existing guidance for the use of QSARs under REACH are listed 

together with sources of relevance for the evaluation and integration of QSARs in probabilistic risk 

assessment. Then, unsolved issues of relevance are identified and followed up by what has been 

done within the project to address or solve these issues. Details of solutions and evaluations are 

given in appendices. The final section provides recommendation on future use of QSARs in risk 

assessment. 
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2. Overview of existing guidance  

2.1. Guidance documents for probabilistic risk assessment 

A thorough guidance on information requirements and Chemical Safety Assessment is found on the 

website of the Environmental Chemicals Agency (ECHA) available at http://echa.europa.eu/support: 

Chapter R 19 in the Guidance on information requirements and Chemical Safety Assessment contains 

a description of probabilistic risk assessment under REACH and introduces uncertainty analysis.  

There are many articles and books on risk assessment out of which two are mentioned here:  

Jager, T., T. G. Vermeire, et al. (2001). "Opportunities for a probabilistic risk assessment of chemicals 

in the European Union." Chemosphere 43(2): 257-264. This can be seen as an introduction to the 

exposure and effect paradigm for probabilistic risk assessment. 

Aven, T. (2010). "Some reflections on uncertainty analysis and management." Reliability Engineering 

& System Safety 95(3): 195-201. This is a general introduction to probabilistic risk assessment that 

discusses the interpretation of probability and uncertainty in a broader perspective 

2.2. Guidance documents on the use of QSARs in Chemical Safety 

Assessment under REACH 

Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006 

concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). 

Commission of the European Communities, Brussels. This is the original regulatory document on the 

the use of QSARs in risk assessment under REACH. 

The following standard to ensure the validity of the use of QSARs plays a major role: 

OECD (2006). Report on the regulatory uses and applications in OECD member countries of (Q)SAR 

models in the assessment of new and existing chemicals. Environmental Chemicals Agency, Finland.  

Guidance documents found at the website of the Environmental Chemicals Agency (ECHA): 

http://echa.europa.eu/support 

ECHA (2008). R.6: QSARs and grouping of chemicals, Guidance on information requirements and 

chemical safety assessment. Environmental Chemicals Agency, Finland. 

ECHA (2009). Practical guide 5: How to report (Q)SARs? Environmental Chemicals Agency, Finland. 

ECHA (2010). Practical guide 2: How to report weight of evidence? Environmental Chemicals Agency, 

Finland. 

Reporting formats provide guidance on what is asked for to have a valid model and a valid prediction: 

Joint Research Centre (2008). QSAR model reporting format (version 1.2), Institute for health and 

consumer protection. 

Joint Research Centre (2008). QSAR Prediction Reporting Format (QPRF) (version 1.1). Institute for 

Health and Consumer Protection.  
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Case-studies on the use of QSARs in risk assessment: 

Joint Research Centre (2011). A Framework for assessing in silico Toxicity Predictions: Case Studies 

with selected Pesticides. Report from the European Commission’s Joint Research Centre, Institute for 

Health and Consumer Protection. This contain a checklist of 10 key questions that the risk assessor 

should go through when evaluating a QSAR model in a regulatory purpose 

Pavan, M. and A. Worth (2008). "A set of case studies to illustrate the applicability of DART (Decision 

Analysis by Ranking Techniques) in the ranking of chemicals." JRC Scientific and Technical Reports 

EUR 23481 EN - 2008. Refers to the use of QSAR predictions in classifications.  

The use of QSARs in risk assessment is exemplified and developed in several deliverables from 

research projects such as CADASTER (www.cadaster.eu), OSIRIS (http://www.osiris-project.eu/), 

EUFRAM (http://www.ist-

world.org/ProjectDetails.aspx?ProjectId=641be1ad0b8244bdbecc4d8f56c1e068&SourceDatabaseId=

081fd37e0ca64283be207ba37bb8559e) and OPENTOX (http://www.opentox.org/) 

Two articles about the use of QSARs and their validity and reliability: 

Eriksson, L., J. Jaworska, et al. (2003). "Methods for reliability and uncertainty assessment and for 

applicability evaluations of classification- and regression-based QSARs." Environmental Health 

Perspectives 111(10): 1361-1375. The Bayesian framework for classification models is described in 

this paper. 

Gramatica, P. (2007). "Principles of QSAR models validation: internal and external." QSAR & 

Combinatorial Science 26(5): 694-701. 

Present Bayesian principles of inference and QSAR modelling 

Aldenberg, T. (2004). "Review of methods for assessing the applicability domains of SARs and QSARs. 

Paper 3: Joint applicability domain and predictive uncertainty in QSAR regression." 

Useful references for the judgement of confidence in a QSAR prediction: 

Jaworska, J. and N Nikolova-Jeliazkova (2007). ”How can structural similarity analysis help in category 

formation.” SAR and QSAR in Environmental Research, 18(3-4) 

 

Jaworska, J., N. Nikolova-Jeliazkova and T Aldenberg (2005) “QSAR Applicability Domain Estimation 

by Projection of the Training Set in Descriptor Space: A Review.” ATLA, 33, 445–459. 

 

Nikolova-Jeliazkova, N. and J. Jaworska (2005). “An Approach to Determining Applicability Domains 

for QSAR Group Contribution Models: An Analysis of SRC KOWWIN.” ATLA, 33, 461–470  

 

T.I. Netzeva, A.P. Worth,T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, 

G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. 

Roberts, T.W. Schultz, D.T. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith & C. Yang (2005). “ECVAM 

WORKSHOP REPORT Current status of methods for defining the applicability domain of (quantitative) 

structure-activity relationships .“ ATLA, 33, 155-173 
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The AmbitDiscovery is a program that implement most metrics mentioned above and are used to 

evaluate predictive reliability for which download and manual is available at: 

 

http://ambit.sourceforge.net/download_ambitdiscovery.html 
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3. Gaps in current guidance on the application of QSARs in 

probabilistic risk assessment addressed in the CADASTER project 
Current guidance on the use of QSARs in chemical safety assessment does not provide enough 

support for the application of QSARs in probabilistic risk assessment. Identified gaps or needs are 

identified below and followed up by how these have been addressed within the CADASTER project.  

 

3.1. A motivation to actually consider uncertainty in QSAR predictions in 

chemical safety assessment 

Gap: Even though pointed out as relevant, is uncertainty in QSAR predictions given low or vague 

consideration in the available guidance or tools generating QSAR predictions.  

CADASTER action: Motivate why to consider uncertainty in QSAR predictions in chemical safety 

assessment 

Summary of the manuscript “Arguments for considering QSAR uncertainty in hazard and risk 

assessments” by Ullrika Sahlin, Laura Golsteijn, M. Sarfraz Iqbal, and Willie Peijnenburg in Appendix 

1. The manuscript has been submitted to CADASTER workshop proceedings in ATLA. 

 

3.2. Case-studies QSAR-integrated fate-, hazard- and risk assessment 

Gap: More examples are needed to illustrate how QSAR predictions can be part of uncertainty 

analysis.  

CADASTER action: 3.2. Perform Case-studies QSAR-integrated fate-, hazard- and risk assessment.  

Case-studies are presented in CADASTER deliverable 4.6. “Synthesis of research findings and 

recommendations for prioritization”, out of which some are found in Appendix 2.  

 

3.3. A conceptual framework that identifies uncertainty in QSAR prediction 

as being both quantitative and qualitative 

Gap: Uncertainty is difficult to understand and is influenced by judgment and context. In order to 

provide guidance on how to consider uncertainty associated to the use of QSARs in probabilistic risk 

assessment there is a need of a common understanding of uncertainty in QSAR predictions.  

CADASTER action: 3.3. Develop a conceptual framework that identifies uncertainty in QSAR 

prediction as being both quantitative and qualitative. 

Summary and table of the framework from the manuscript “Uncertainty in QSAR predictions” by 

Ullrika Sahlin in Appendix 3. The manuscript has been submitted to CADASTER workshop proceedings 

in ATLA. 
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3.4. An overview of approaches to quantify uncertainty in QSAR regression 

by probabilities 

Gap: QSAR modeling covers a wide variety of supervised learning algorithms, which more or less 

quantify uncertainty in the error associated to individual QSAR predictions. There is need to describe 

and evaluate approaches to characterize the error in an individual QSAR prediction by a probability 

distribution.  

CADASTER action: 3.4. Provide an overview of approaches to quantify uncertainty in QSAR 

regression by probabilities to stimulate progress on method development. 

Adopting the Bayesian framework for predictive inference may stimulate the integration of QSARs in 

probabilistic risk assessment, since it acknowledges both the use of expert judgment to build models 

and to quantify uncertainty in predictions. Since Bayesian principles in relation to QSARs most often 

are presented for classification models, activities within the CADASTER project have been focusing on 

applications on regression models. More details are found in Appendix 4. 

 

3.5. Explore the possibilities of considering sources of variability and 

uncertainty in QSAR modeling 

Gap: QSAR data are commonly given as point values for every compound, but these can be of varying 

quality and associated with different uncertainty or variability.  

CADASTER action: 3.5. Explore the possibilities of considering sources of variability and uncertainty 

in QSAR modeling. 

Adopting Bayesian modeling see Appendix 4 is applicable here. The benefit from consideration of 

variability in experimental values has been evaluated (Appendix 5.1 and 5.2).  

 

3.6. Sensitivity analysis to evaluate the influence of qualitative QSAR 

uncertainty on the total confidence in an assessment 

Gap: Qualitative uncertainty depends on to what extent a prediction is an extrapolation for a QSARs 

domain of applicability. There is a need to develop practical experience to support the judgment of 

confidence in assessment output that depends on qualitative uncertainty in QSAR predictions used as 

input parameters. When QSAR are used as input to an assessment, the judgment of whether a QSAR 

prediction is acceptable is made before the assessment is made. Judging what is acceptable or not 

may be sensitive to the context in which the assessment supports decisions.  

CADASTER action: 3.6. Suggest a method for sensitivity analysis to evaluate the influence of 

qualitative QSAR uncertainty on the total confidence in an assessment.  

A slideshow presentation on info-quality analysis is included in Appendix 6 and an extended 

uncertainty analysis is described in the case-studies presented in Appendix 2. The communication of 

qualitative uncertainty has been stimulated by development of graphs of measure of predictive 

reliability versus prediction, together with the position of the training data set and the prediction.  
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3.7. QSAR-integrated SSD modeling 

Gap: The added error from using a QSAR prediction compared to the experimentally based estimate 

ought to be considered when combining these kinds of information. We seek an approach to 

consider uncertainty in QSAR predictions that do not reduce variability in Species Sensitivity 

Distributions (SSD).  

CADASTER action: 3.7. Evaluate the possibilities of QSAR-integrated SSD modeling 

The results of a simulation experiment demonstrating the influence of QSAR uncertainty on 

hazardous concentration assessed by the SSD approach, is given in Appendix 7. 
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4. Conclusions 
QSARs are advantageous, compared to other non-testing methods, since their mathematical 

formulation open up for uncertainty to be quantified by modelling. A QSAR prediction is non-testing 

information that may replace unavailable testing information in Chemical Safety Assessment. It is not 

possible to say with 100% certainty that a QSAR prediction result in the same value as an estimate 

based on the corresponding experimental test. There is always and unknown error associated to the 

use of a predictive model instead of direct empirical observations. This error exist even if the relation 

between structures and activities (or properties) in a QSAR is strong. Also, experimental values can 

be erroneous, and that is why validity of data always is established before using a QSAR. Predictions 

from a QSAR are not better than the data used to build the model.  

A successful communication of the uncertainty associated to QSAR predictions rely on a proper 

acknowledgement of error in a QSAR prediction in relation to the testing information it is meant to 

replace. This means that a QSAR prediction used in probabilistic risk assessment (i.e. where relevant 

sources of uncertainty are considered) ought to be foregone by consideration of the qualitative and 

quantitative characteristics of this error, which is specific for every individual prediction. A proper 

acknowledgement of uncertainty in QSAR predictions means to present predictions with their 

associated error either as an interval or as a probability distribution (i.e. quantitative characteristic), 

and a judgment of the confidence in the prediction given the QSAR models domain of applicability 

(i.e. qualitative characteristic). For this purpose methods to evaluate the validity and reliability of a 

QSAR may need to be complemented by assessment of uncertainty in an individual QSAR prediction 

and its influence on the risk assessment. The quantitative nature of QSARs based on chemical 

knowledge in combination with predictive inference, makes this into the non-testing method with 

the good possibilities of data-driven assessment of uncertainty as opposed to expert judgment only.  

Uncertainty in risk assessment is usually described by probabilities, and is subjective reflecting the 

uncertainty of the risk assessor. A transparent characterization of uncertainty in QSAR predictions is 

informed by the underlying QSAR data, i.e. quantitative molecular descriptors and quantitative 

measures of an activity or property for a set of chemical compounds for which a QSAR is believed to 

exist, and inference from a probability model. Inference can be more or less dependent on the 

underlying QSAR algorithm, more or less based on expert judgment, but requires probabilistic 

modelling in addition to or integrated into the QSAR modelling. There is much to be gained by using 

probabilistic specifications of QSARs to allow for a quantification of uncertainty through inference on 

a statistical principle. The Bayesian principle of inference is valid given the usually small sizes of QSAR 

data and the way QSAR data are selected, in combination with the prevailing paradigm for 

understanding uncertainty in a risk context.  

Based on the activities in CADASTER aimed to integrate QSARs into probabilistic risk assessment we 

propose the following recommendations: 

General recommendations 

• Support the use of QSAR predictions in risk assessment under REACH, but propose rigorous 

tools (such as uncertainty characterization and external validation) to avoid any misuse. 

• Support the use of QSAR predictions by raising its advantages in relation to other in-Silico 

techniques. 
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Recommendations with respect to the development of future QSARs to facilitate the integration to 

risk assessment 

• Build QSARs that are probabilistic such as Bayesian modelling. 

• Build QSARs that model sources of variation in hierarchical levels to open up for the 

consideration of variability in experimental data, amongst others due to varying quality in 

underlying experimental data. 

• Build QSAR integrated assessment models that in a hierarchical fashion integrate QSAR data, 

available experimental data, sources of variability and uncertainty to properly assess the 

hazard and risk endpoints.  

Recommendations with respect to reporting of QSAR information 

Extend/modify information requirements and reporting formats  

• Such that uncertainty becomes naturally associated to a prediction 

• To be able to consider uncertainty quantified by probabilities (e.g. it should be possible to 

attach a random sample from a predictive distribution to open up for Monte Carlo 

simulation). 

• To include the assessment of quantitative uncertainty including evaluation of the approach 

taken (its theoretical bases and if possible by evaluation on QSAR data),  

• To include a QSAR-specific recommended approach to judge the confidence in QSAR 

predictions (based on some metric to evaluate predictive reliability and reference cut-offs to 

aid judgement). 

Recommendations with respect to the practical integration of QSARs into risk assessment 

• There is a need for methods to propagate both qualitative and quantitative uncertainty 

associated to QSAR-predicted input parameters to risk assessment.  

• There is a need to find simple rules of thumb that can be used to facilitate the reporting of 

uncertainty in QSAR predictions. 

Recommendations for future activities 

• Support workshops on the assessment and consideration of QSAR uncertainty with practical 

training. 

• Support the development of more case-studies to show the impact and usefulness of 

considering uncertainty in QSAR predictions in the regulatory decision context under REACH.  

• Support more research on the QSAR integrated assessments and development of user-

friendly tools for uncertainty analysis and evaluation of quality assessment output with 

respect to quality in available background knowledge.  
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Summary  

Chemical regulation allows non-testing information to replace experimental values in hazard and risk 

assessments. Non-testing information on chemical activities or properties is subject to added 

uncertainty as compared to testing information, but this uncertainty is commonly not (fully) taken 

into account. Considering uncertainty in predictions from Quantitative Structure Activity 

Relationships (QSARs), a non-testing information, may improve the way QSARs support Chemical 

Safety Assessment under REACH. We argue that it is useful to consider uncertainty in QSAR 

predictions as it 1) supports rational decision making, 2) facilitates cautious risk management, 3) 

informs uncertainty analysis in probabilistic risk assessment, 4) may aid the evaluation of QSAR 

predictions in weight-of-evidence approaches, and 5) provides a probabilistic model to verify 

experimental data used in risk assessments. The discussion is illustrated by case-studies of QSAR 

integrated hazard and risk assessment from the EU-financed project CADASTER.  

Key words: decision making, uncertainty analysis, probabilistic risk assessment, non-testing 

information 

 

Manuscript is submitted to the CADASTER workshop proceedings in ATLA 
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Appendix 2 

Case-studies conducted within CADASTER Work package 4: 

Integration of QSARs within hazard and risk assessment 

Introduction to case-studies 

An aim with CADASTER has been to provide practical guidance to QSAR-integrated risk assessment, 

by exemplifying the integration of information, models and strategies for carrying out safety-, 

hazard- and risk assessments for large numbers of substances. Some of the results are here 

presented as case-studies to demonstrate the use of QSARs (as an example of non-testing 

information) for regulatory decision whilst meeting the main challenge of quantifying and reducing 

uncertainty. 

The purpose of the case-studies is to prioritize compounds by identifying those believed to be of 

highest concern based on information from QSARs. Such ranking based on QSAR predictions may be 

a fast way to scan over a large number of compounds. One could also rank based on the available 

information, i.e. compounds for which experimental data is lacking. The case-studies presented here 

demonstrate the integration of QSARs in chemical safety assessment and only use information 

retrieved from QSAR predictions, even though experimental data may be available for some 

compounds. The assessments and approaches have been selected to exemplify the considering 

uncertainty in QSAR predictions when integrating QSARs into hazard and risk assessment.   

The case-studies presented here exemplify the use of in-silico structure-activity relationships (QSARs) 

and computational chemistry, including issues such as the applicability domain and validation status, 

and the use of probabilistic methods to consider variability and uncertainty. Uncertainty is here 

considered statistically by predictive inference, quantitatively by uncertainty analysis in a 

probabilistic assessment, and qualitatively through the evaluation and propagation of confidence in 

QSAR derived information. Variability is here considered through QSARs integrated to Species 

Sensitivities Distributions (SSDs).  

Abbreviations 

PFC Perfluoroalkylated substances and their transformation products, like perfluoroalkylated 

sulfonamides, alkanoic acids, sulfonates. Fluorinated compounds are typically a class of 

persistent, relatively hydrophilic compounds that may be toxic for man and environment. 

 

BDE Polybrominated diphenylethers (PBDE), typically being a class of hydrophobic chemicals 

that pose a threat to man and the environment. 

 

BTAZ Triazoles/benzotriazoles, a class of chemicals that are increasingly used as pesticides and 

anti-corrosives. 
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List of case-studies 

Chemical group Title Corresponding author 

and affiliation 

Reference 

PBDEs 

 

QSAR integrated fate 

assessment of PBDEs 

S Iqbal LNU D4.1 and manuscript in 

review(Iqbal, Golsteijn 

et al. in review) 

PBDEs 

 

QSAR integrated 

hazard assessment of 

PBDEs 

E Rorije RIVM D4.1  

PBDEs Uncertainty analysis in 

QSAR integrated 

hazard assessment of 

PBDEs 

U Sahlin LNU Appendix PBDE.1 

PBDEs 

 

Prioritization based on 

PBT evaluation of 

PBDEs 

U Sahlin LNU Appendix PBDE.1 

PBDEs Impact assessment of 

PBDEs 

A Shipper RUN D4.4 and two 

manuscripts  (details in 

appendix PBDE.2) 

Triazoles QSAR integrated fate 

and effect assessment 

of triazoles 

L Golsteijn RUN D4.1 and manuscript in 

review (Golsteijn, Iqbal 

et al. in review) 

Triazoles Prioritization based on 

hazard assessment of 

BTAZs 

U Sahlin LNU Appendix BTAZ.1 

Triazoles Prioritization based on 

risk assessment of 

BTAZs 

U Sahlin LNU Appendix BTAZ.2 

Triazoles Uncertainty analysis of 

QSAR integrated 

hazard assessment of 

BTAZs 

U Sahlin LNU Appendix BTAZ.3 

Triazoles Uncertainty analysis of 

QSAR integrated risk 

assessment of BTAZs 

U Sahlin LNU Appendix BTAZ.4 

PFCs QSAR integrated 

hazard assessment of 

PFCs 

U Sahlin LNU Appendix PFC.1 

PFCs Prioritization based on 

hazard assessment of 

PFCs 

U Sahlin LNU Appendix PFC.1 

PFCs QSAR integrated fate 

assessment of PFCs 

L Golsteijn RUN Appendix PFC.2 

(Golsteijn, Papa et al. 

manuscript) 
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Tetko (2012). "Application of QSAR models for probabilistic risk assessment (report and model)." 
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Manuscripts submitted or in preparation 

Golsteijn, L., M. S. Iqbal, et al. (in review). "The Relative Importance of Uncertainty in Predicted 

Chemical Properties for the Comparative Toxicity Potentials of Triazoles  ". 

Golsteijn, L., E. Papa, et al. (manuscript). "The Role of Uncertain Koc Predictions in the Overall 

Persistency and Long Range Transport Potential of Perfluorinated Chemicals." 

Iqbal, M. S., L. Golsteijn, et al. (in review). "Dealing with QSPR predictive uncertainty in 

environmental fate modeling ". 
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Appendix 3 

Title: Uncertainty in QSAR predictions 
Ullrika Sahlin 

School of Natural Sciences, Linneaus University, Kalmar, Sweden 

Ullrika.Sahlin@lnu.se 

Fax: +46 480 44 73 40 

Summary  
It is relevant to consider uncertainty in individual predictions when Quantitative Structure - Activity 

or Property Relationships (QSARs) are used to support decisions of high societal concern. Successful 

communication of uncertainty in the integration of QSARs in Chemical Safety Assessment under 

REACH can be facilitated by a common understanding of how to define, characterize, assess and 

evaluate uncertainty in QSAR predictions. A QSAR prediction is, compared to experimental estimates, 

subject to added uncertainty that comes from using a model instead of empirically based estimates. 

A framework is provided that distinguish between uncertainty in a QSAR prediction being 

quantitative, i.e. for regressions related to the error in a prediction and characterized by a predictive 

distribution, and qualitative, expressing our confidence in using the model to predict a particular 

compound judged based on a quantitative measure of predictive reliability. A quantitative (i.e. 

probabilistic) predictive distribution is possible to assess given the supervised learning algorithm, the 

underlying QSAR data, a probability model for uncertainty and a statistical principle for inference. 

The integration of QSARs into risk assessment may be facilitated by including the assessment of 

predictive error and predictive reliability into the “unambiguous algorithm” as asked for by the 

second OECD principle. 

Key words: regression, knowledge-based uncertainty, probabilistic risk assessment, uncertainty 

analysis, applicability domain 

Submitted to CADASTER workshop proceedings 
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Tables 
Table 1. A framework for the definition of a QSAR prediction, which dependent on the purpose of 

prediction can be without or without uncertainty.   

ID Description Notation 

1 Quantitative descriptor(s) X 
a
 

2 Quantitative measure of a property or activity Y 

3 QSAR Y | X 
b
 

4 Known values on Y y 

5 Specific values for the i’th compound {y,X}i 

6 QSAR data is a set of n compounds for which the 

quantitative property or activity is known 

{y,X}i = 1:n  

7 Supervised learning algorithm A 

8 QSAR model is a supervised learning algorithm and QSAR 

data 

Y | X, {y,X}i=1:n, A 

9 Property or activity of query compound Z 

10 Known values on Z z 

11 Quantitative descriptor(s) of query compound W 
a
 

12 QSAR external data is a set of nExt compounds with known 

values but not used to train the model 

{z,W}j = 1:nExt  

13 QSAR prediction without uncertainty is a supervised 

learning algorithm, QSAR data and descriptors for the query 

compound 

Z | W, {y,X}i=1:n, A 

14 Algorithm to assess uncertainty U 

15 QSAR prediction with uncertainty is a supervised learning 

algorithm that includes the assessment of uncertainty, 

QSAR data (sometimes including external QSAR data) and 

descriptors for the query compound 

a) Z | W, {y,X}i=1:n, AU  

or  

b) Z | W, {y,X}i=1:n,  {z,W}j=1:nExt , 

AU  

a
 We assume the values on X and W always are known. 

b
 The symbol “|” stands for “given that” 
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Appendix 4 

An overview of approaches to quantify uncertainty in QSAR regression 

by probabilities 
Text is modified from “Uncertainty in QSAR predictions” submitted to CADASTER workshop 

proceedings in ATLA by Ullrika Sahlin 

A prerequisite for successful communication of uncertainty is to understand what is meant by a 

QSAR prediction and its uncertainty. QSARs can roughly be divided into two kinds of predictions: 

classifications and regressions (Eriksson, Jaworska et al. 2003). A classification places a compound in 

one out of at least two categories, such as biodegradable or not. Uncertainty assessments for 

classifications may be based on contingency table statistics (Fielding and Bell 1997) and the 

assessment of the probability of making a correct classification given descriptor values is done in a 

Bayesian framework (Eriksson, Jaworska et al. 2003). Regression within the QSAR community means 

modelling of a continuous response, such as boiling point. The assessment of uncertainty in QSAR 

regressions is hampered by the prevailing point prediction view on QSAR predictions, and difficult to 

grasp given the wide array of modelling approaches that more or less model uncertainty in 

predictions (Sahlin, Filipsson et al. 2011). As a start, there is a need for a common understanding in 

uncertainty and its assessment with a broad perspective on modelling algorithms.  

The focus here is on the assessment of uncertainty given the way QSAR modelling commonly 

consider available experimental data, which is as experimentally based point estimates. Even though 

relevant, the uncertainty that comes from both variability and measurement errors in experimental 

data cannot be quantitatively assessed unless modelled and recognized in the QSAR data (but see 

Tebby and Mombelli 2012). Further, the focus on quantitative approaches, algorithms and metrics 

does not mean that we reduce the importance of the chemical perspective for a successful 

implementation of QSARs in chemical regulation. 

The meaning of QSAR uncertainty needs to be understood in relation to risk assessment practice. 

Risk assessment is a science-based approach, but nevertheless the characterization of uncertainty 

rest upon assumptions and decisions taken by the risk assessor. In general one may view uncertainty 

in a risk assessment as reflecting the risk assessor’s uncertainty in predicted quantities to express 

risk, given available background knowledge (Aven 2010). Thus uncertainty, in the context of risk 

assessment, is to be understood as a subjective judgment that can change when new data, models or 

expert knowledge are added to the background knowledge. In order to tally the interpretation of 

uncertainties in input with that of the output of an assessment, the final interpretation of uncertainty 

in input parameters supported by QSAR predictions before entering an assessment will be as a 

subjective judgement of scientific basis for decision support (National Research Council 2009). 

However, even though uncertainty with the purpose to support risk assessment should be assessed 

to reflect the risk assessor’s uncertainty in a QSAR prediction, its assessment can more or less based 

on data and probabilistic modelling, and is not constrained by the QSAR algorithm. Even though 

uncertainty is subjective, there is a need for unambiguous algorithms for its assessment to inform 

and support the final choice of its characterization. 
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Uncertainty in QSAR predictions is a major concern, especially when these predictions may influence 

human and animal lives as well as the safety of environmental systems. Approaches to assess 

uncertainty must therefore be as correct as possible, which poses a need to evaluate the quality in 

assessments of uncertainty, of which transparency, repeatability, and motivation are relevant 

characteristics. To aid we seek a useful guidance to characterize uncertainty in a QSAR prediction 

with the purpose to support decision making pointing at its definition, characterization, assessment 

and evaluation (Table 1).  

Table 1. The characterization of uncertainty in a QSAR prediction useful to support decision making 

requires an unambiguous definition, characterization, assessment and evaluation.  

Uncertainty Predictive error Predictive reliability  

Definition Magnitude of the add 

error in a prediction 

compared to 

experimental based 

estimate 

Confidence in using a 

model to predict a 

specific compound 

Characteristic Quantitative probability 

distribution 

Qualitative judgment of 

confidence (e.g. high or 

low) 

Assessment Probabilistic modelling 

of the error based on 

sampling, re-sampling, 

or probability theory 

maybe in combination 

with expert judgment 

Confidence assessed by 

expert judgment 

(informed by relative 

measures such as 

density, distance and 

variation in perturbed 

predictions) or empirical 

coverage 

Evaluation Empirical coverage for a 

chosen level of 

confidence or 

likelihoods for an 

external data set 

(relative) 

Difficult to evaluate a 

qualitative judgment per 

se. Alternative measures 

of predictive reliability 

can be evaluated for 

their abilities to capture 

a trend in predictive 

error or perceived lower 

reliability. 

 

Chemical Safety Assessment asks for knowledge-based uncertainty in QSAR prediction in the relation 

to information requirements and uncertainty analysis. Information must fulfil several requirements 

before allowed to support a Chemical Safety Assessment (ECHA 2008). In particular ECHA asks for the 

validity of a selected QSAR to have been assessed and that it must have been verified that the 

chemical predicted falls within the applicability domain of to give a reliable prediction (ECHA 2009). 

The last requirement is a qualitative characterization of uncertainty (which we refer to as predictive 

reliability) related to the use of a QSAR to predict a specific chemical.  
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Uncertainty analysis is conducted to evaluate the need to refine an assessment and to inform the risk 

assessor on the magnitude of risk. Uncertainty can be analysed in three tiers with increasing 

precision of the quantification of uncertainty, going from deterministic, worst (plausible case) to 

probabilistic. Probabilistic means that uncertainty is given a full characterization by specifying 

likelihoods of all possible values an input parameter may take quantified by probabilities. Uncertainty 

analysis distinguish between parameter uncertainty, model uncertainty and scenario uncertainty 

(ECHA 2008). Out of these three, uncertainty in a QSAR prediction is most closely associated to 

parameter uncertainty, which according to ECHA “is the uncertainty involved in the specification of 

numerical values”. Parameter uncertainties include measurement errors, sample uncertainty, 

selection of the data used for assessing the risk, and extrapolation uncertainty, where latter can be 

“the use of alternative methods (e.g. QSAR, in-vitro test, read-across for similar substances) or use of 

assessment factors (e.g. inter-species, intra-species, acute to chronic, route to route, lab to field 

extrapolation)”.  The need to quantify uncertainty in QSAR predictions by probabilities was pointed 

out by Walker et al (2003) suggesting “that errors needs to be evaluated when applying QSARs by 

providing confidence intervals that take into consideration the uncertainty associated with the 

estimate”, and we note that a confidence interval presumes an underlying probability distribution.  

This shows that there is a need to characterize uncertainty in a QSAR prediction that is both 

qualitative, expressing our confidence in using a prediction to support decision making, and 

quantitative, expressing our belief in what values the predicted property or activity may have after 

being observed (Sahlin, Filipsson et al. 2011). The qualitative uncertainty is related to reliability in 

individual predictions, and we refer to this as “predictive reliability” to avoid confusing it with 

reliability in a more general meaning (Table S1). The quantitative uncertainty is associated to the 

predictive error, which is measure describing the distance between a point prediction and the actual 

value, and may change from compound to compound. Both predictive reliability and predictive error 

are sensitive to which degree a prediction is an extrapolation from a model. 
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Figure 1. An overview of approaches to quantify uncertainty in QSAR regression by probabilities. 

 

Characterizing quantitative QSAR uncertainty – the predictive error 

Definition and characterization 

Quantitative uncertainty is related to the error in a prediction which for a regression is the difference 

between the unobserved and predicted property or activity of a compound. We aim to quantify 

uncertainty in the associated error to an individual prediction by a probability distribution that 

express our belief in what values the error in a prediction may take after the property or activity has 

been observed. The probability distribution for the predictive error is here referred to as the 

predictive distribution.  

Assessment 

Approaches to assess the predictive distribution can be made under different statistical frameworks, 

using more or less data intensive methods, with more or less specified probabilistic models for 

uncertainty (Figure 1). Sampling Theory assess predictive error based on a representative sample. 

Such (frequentist) inference rests upon assumptions of independent and, for example, identically 

distributed observations, in combination with a probabilistic assumption of uncertainty. Under 

violence of any of these assumptions, appliers of frequentist inference run into problems. The 

Bayesian paradigm for inference assign, instead of assume, a probabilistic model for observations, 

and assign models for uncertainty in parameters (so called priors). Bayesian inference uses Bayes rule 

to update expert knowledge with information in empirical observations. The result is a well-defined 
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probabilistic model of uncertainty. In cases of doubts, the caveat is the necessity to choose priors and 

probabilistic models (likelihoods). For example, there is no need to check an assumption of normality 

of errors (as in the frequentist case), as this is assigned through expert judgment.  

 

Figure 2. An illustration of a MCMC sample of a triazole predicted by the B(TAZ) QSAR (a) and the 

resulting predictive distribution which is compared to a predictive distribution based on an Ordinary 

Least Squares (OLS) regression fitted to the same descriptors (b). The predictive distribution for the 

OLS is assessed by assuming errors to be independent and identically distributed as Normal 

distribution with fixed variance, which generates a predictive distributions being a Student-t.   

 

A third approach is to assign a probability distribution for predictive error based on expert judgment 

only. This can for example, be based on experience of experimental testing, or based on 

combinations of different sources of information. Sampling Theory and solid expert judgment can be 

seen as extremes kinds of Bayesian inference. Expert judgment of uncertainty can be seen as 

Bayesian modelling of the error with no updating, i.e. based on prior distribution only. The difference 

between frequentist and Bayesian inference in parametric and non-hierarchical linear regressions is 

usually negligible given a large data set or non-informative. Differences between predictive 

distributions generated by the Bayesian Lasso and Student-t following frequentist statistical 

inference from an OLS prediction (see e.g. Montgomery, Peck et al. 2001) in Figure 2, may derive 

from the use of informative priors in combination with a weak signal in the QSAR data. Note that the 

comparison between OLS and Bayesian is made for a given set of descriptors. Perhaps the largest 

difference between the two approaches lies in the selection of descriptors.  

In order to do assess the predictive distribution a probability model is to be included or added to the 

supervised learning algorithm for prediction. There is a need to acknowledge and discuss the 

conditions and suitability of different approaches to include the assessment of predictive distribution 

in the QSAR algorithm.  

Work in CADASTER project has been done to develop models/methods to assess predictive error, 

either as an absolute (point) value of the error or as the predictive distribution. Here follows a 

description of what has been done with suitable references to CADASTER outcomes.  

Bayesian analytical 

Result for Student – t are found in Deliverable 4.1 and in case-studies (Golsteijn, Iqbal et al. in review; 

Iqbal, Golsteijn et al. in review; Golsteijn, Papa et al. manuscript). 
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Bayesian sampling 

The predictive distribution have been characterized by Markov Chain Monte Carlo (MCMC) sampling 

from a QSAR modelled by Bayesian lasso in the consensus modelling of aquatic toxicity for three 

species (Cassini, Kovarich et al. in review). The Bayesian lasso has been implemented as an 

alternative modelling algorithm on the CADASTER web tool.  

Sampling 

Assessment of predictive error as the average error evaluated on an external data set have been 

done for the majority of models developed in CADASTER (e.g. Tetko, Sushko et al. 2008; Papa, 

Kovarich et al. 2009) 

Re-sampling without replacement 

This approach is what is done when using any kind of cross-validation such as Leave-One-Out (LOO) 

or Leave-M-Out assessment of predictive error based on Predictive Error Sum of Squares. This 

approach has been applied on the majority of models developed in the project. It is also considered 

in on of CADASTER simulation studies (Sahlin, Jeliazkova et al. In review).  

Re-sampling with replacement 

Non-parametric bootstrap 

A probabilistic characterization of the predictive error without any specific (i.e. parametric) 

probability distribution have been assessed based on modified residuals (Sahlin, Jeliazkova et al. In 

review). In this approach a sample from the empirical distribution of residuals, modified under a 

chosen set of assumptions, are used to assess predictive distribution.  

Parametric bootstrap 

Error from QSAR regressions can be assumed to have a symmetric predictive distribution such as 

Gaussian or Student-t. Predictive distributions were defined by local assessment of predictive error 

that specified the standard deviation in an assumed Gaussian distribution. Method development 

have been made on modified residuals (Sahlin, Jeliazkova et al. In review) and segment-based 

assessments (Tetko, Sushko et al. 2008; Zhu, Tropsha et al. 2008). Local assessment of characteristics 

of accuracy for classification models has med developed as well (Sushko, Novotarskyi et al. 2010). 

Bayesian bootstrap 

Bayesian bootstrap is a combination of Bayesian sampling and bootstrapping, where the sampling is 

made based on prior probabilities (Davison and Hinkley 1997).    

Evaluation 
In the same way as QSAR algorithm needs to be verified, ought also the algorithm to assess 

predictive error by the predictive distribution needs to be evaluated for a particular QSAR. Sampling 

and re-sampling are data rich methods and in the domain where there are many data points. As the 

size of samples become smaller it increases the need for parametric specification of QSAR model 

including the probabilistic model for uncertainty. Some modellers may feel uncomfortable with 

adding prior information or making parametric specifications. It is therefore important to evaluate a 

model, by for example comparing it to a less constrained alternative. The burden of information and 

resources for calculations should be in relation to the required level of detail of the quantified 

uncertainty (Jager, Vermeire et al. 2001; ECHA 2008). Before suggesting a resource demanding and 

complex approach to assess uncertainty, it may be relevant to evaluate it in relation to a simpler 
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assessment. A candidate for a Rule of Thumb, which can be read out from information provided in 

QMRF, is to assign a Gaussian distribution with the point prediction and a reported value on Mean 

Square Error of Prediction as its first and second moment (Sahlin, Filipsson et al. 2011).  

Measures to evaluate predictions with uncertainty are empirical coverage, which should show a one-

to-one correspondence to the assigned confidence levels (see examples in Figure 3). There are also 

relative measures based on likelihood-based measures that can be used to make relative comparison 

between alternative algorithms (see e.g. Tetko, Sushko et al. 2008) or as weights for model averaging 

of alternative predictions in consensus modelling (Johnson and Omland 2004).  
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Appendix 5.1 

Explore the possibilities of considering sources of variability and uncertainty in QSAR modeling 

 

Varying quality in QSAR data is possible to integrate through Bayesian hierarchical modeling, where 

quality may be assigned by expert judgment (Willighagen et al. 2011). Experimental variability has 

been considered by re-sampling (e.g. Tebby  and Mombelli 2012). Within CADASTER a simulation 

experiment have been performed on the added value of considering multiple experimental values 

compared to their averages as QSAR data. The conclusion is that considering multiple data by the 

method of weighted linear regression did not outperform building a model on average values. These 

results are reported in a Master thesis in Environmental Science at Linneaus University, Sweden and 

poster at second CADASTER workshop in Munich 2012. 

Willighagen, E. L., J. Alvarsson, et al. (2011). "Linking the Resource Description Framework to 

cheminformatics and proteochemometrics." J Biomed Semantics 2 Suppl 1: S6. 

Tebby, C. and E. Mombelli (2012). "A Kernel-Based Method for Assessing Uncertainty on Individual 

QSAR Predictions." Molecular Informatics 31(10): 741-751. 
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Table 1. QSARs in Papa et al. (2009)

Model Formula/Distribution

Endpoint values, Y = X∙B + random error + model error

Descriptor values, X uniform(0,1)

Regression coefficients, B uniform(0,1)

Random errors normal(0,1) ∙chisquare(1,s)

Model errors normal(0,e)

Number of measurements per chemical bionomial(m,p)

Characteristic Range

Probability of multiple measurements, p 0-0.3

Size of multiple measurements, m 1-5

Size of training data, n 10-50

Random error, s 0.01-0.3

Model error, e 0.01-0.3

Number of descriptors, k 1-4

Table 2. Characteristics of the artificial QSAR data setsModel ID

Characteristic 2 3 5 6

Endpoint TM Log(1/PL) LogKoa LogKow

Descriptor X2A T(O..Br) T(O..Br) T(O..Br)

Number of training data 20 28 24 14

Number of multiple measurements 7 6 5 6

Number of test data 5 6 6 6
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Introduction and Aim
The use of QSARs in chemical regulation or other applications of

decision making is possible if they provide predictions with

acceptable confidence (Comber et al. 2003, Cronin et al. 2003).

Confidence is evaluated in terms of a model’s predictive ability,

which includes a precise assessment of uncertainty in

predictions. Uncertainty in predictions from QSAR models arises

not only from the strength of the analogy assumption, saying

that molecules with similar structure should have similar

physiochemical properties, but also from the application of a

statistical model/learning algorithm and from the quality of the

experimental data (Schultz et al. 2003, Trophsa 2010).

Experimental data show variation e.g. from having experiments

done at different labs. Even though there may be more than one

experimental value for a given compound, QSARs are today

mostly developed by using only one experimental value for each

compound, selected by expert judgment or as averages (Papa et

al. 2009). The question that arises is if consideration of more

information in empirical data in QSAR-development may improve

the predictive ability of the model. There are examples where

differences in quality of measurement methods have been

considered by weighting motivated as prior information based on

expert judgment (Willighagen et al. 2011).

The aim was to compare predictive ability of QSARs developed 

on several experimental values per compound to QSARs 

developed on averaged experimental values. 

Models and Analysis
Multiple point estimates was considered by building weighted linear regressions

with weights assigned such that each chemical had equal contribution to the loss

function in the least squares regression. The weighted linear regression (LRW)

and the linear regression based on all experimental data (LRALL) were each

compared to the linear regression based on averages (LRAV). The modeling

approaches ability to predict (including to assess predictive uncertainty) were

evaluated by

1) The correlation between predicted and observed values in an external test 

data set, 

2) Empirical coverage to theoretical confidence levels, and

3) Log likelihood scores derived for a common external data set under the 

corresponding predictive distributions. 

Predictive uncertainty was here assessed as a non-parametric distribution by 

model-based bootstrap. 

First, the effect of considering more experimental information was 

evaluated on four QSAR data sets from models developed by Papa et al. (2009) 

(Table 1). Second, in order to seek generality artificial datasets were 

constructed (Table 2). The comparisons were done on models judged as having 

good predictivity on average, which were those with R^2>0.6 for the training 

data, and where at least one of the approaches succeeded reasonably well in 

assessing the predictive uncertainty[1]. Differences in performance between 

modeling approaches were evaluated by the difference in logged likelihood 

scores, where a difference within 5 is “barely worth mentioning”[2].

Results
LRW rendered identical regression coefficients to LRAV. LRALL

gave slightly different regression parameters (Fig 1). The

estimates of model error and thereby uncertainty in predictions

for the three models were all different (Fig 2). All of the four

models by Papa et al. (2009) LRW showed an improved

predictivity as compared to LRAV (Table 3) indicating that

uncertainty in QSAR predictions may be improved by using

weighting instead of averaging.

Regarding the QSAR models based on the artificial data sets

none of the three modeling approaches had always better

predictive performance than the others, and most differences in

models’ prediction ability were within the “barely worth

mentioning” zone (Fig 3). LRW performed on average worse

than LRAV, and the performance got worse with increasing

expected number of experimental values per compound (p-value

less than 0.001). LRALL had a slightly lowered performance,

compared to LRAV, with increasing expected experimental values

as well (p-value less than 0.01). Neither the number of

compounds per descriptor nor expected total variance

influenced the relative performances of the models.

[1] Judged as those with a Kolmogorov Smirnov statistic < 0.2, i.e. a significance level of 0.05

[2]  According to the decibans scale for Bayes’ factor.

Conclusion
The general conclusion is that of the three investigated model types there is no 

specific model type that always is in favor in terms of model predictivity, and 

which approach that is best depends on the specific data set. Therefore it could 

be worthwhile to consider all three types when developing a QSAR by linear 

regression. 

Model ID

Statistic 2 3 5 6

difference in log 

likelihood score 0.08 0.02 0.07 0.80

Kolomogorov Smirnov 

Stat. (LRAV) 0.51 0.37 0.31 0.37

Kolomogorov Smirnov 

Stat. (LRW) 0.40 0.37 0.26 0.23

Table 3. Comparison of LRW and LRAV based on Papa et al.’s (2009) models.

Fig 1

Fig 2

Fig 3. Differences in log likelihood score with a trend shown by moving average. The dotted 

lines indicate the zone where the differences between modeling approaches are “barely worth 

to mention”. A negative difference favors using averages of experimental values. 
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Quality in information and 

extrapolation uncertainty

- a message from analogy 

predictions supporting management 

advice

Ullrika.Sahlin@lnu.se PhD

“Metaphorically, judgment is a kind of 

intellectual glue, cementing together the 

evidence and the methods”

Weed ”Weight of Evidence: A Review of Concept and Methods” Risk 

Analysis Vol. 25, No. 6, 2005
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Extrapolation uncertainty

Uncertainty and sensitivity analyses

• How can we show when to get worried that an 

assessment is not good enough to support a 

decision?
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Info-quality analysis

• A suggestion on how to propagate lower

confidence in background knoweldge in an 

assessment

– Quality is context dependent

– Relate quality in background knowledge to

confidence

– and confidene to quality in decision support

Enlarge unc to reflect low confidence
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Analogy predictions

”Similar items ougth to have similar properties

or behaviour”

Species 

traits

Habitat 

suitability

Climate

matching

Historical

events

Chemical

structure

Extrapolation uncertainty in analogy

predictions
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Extrapolation uncertainty in analogy

predictions
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Quick summary

• Scientific advice is evalutated in the step -

Managerial review and judgment

• We can assure quality by sensitivity analysis

towards different kinds of sources of uncertainty

• Extrapolation uncertainty cannot be statistically

quantified, violates assumption of

exchangeability, and exists in many assessments

• Info-quality analysis was here examplified with

assessments based on analogy predicions
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Appendix 7 

QSAR-integrated SSD modeling 
Ullrika Sahlin (corresponding author) ullrika.sahlin@lnu.se 

Linneaus University, Sweden 

Introduction 
The Species Sensitivity Distribution (SSD) approach (Posthuma II, Suter et al. 2002)(Posthuma II, 

Suter et al. 2002)(Posthuma II, Suter et al. 2002) to assess the Predicted No Effect Concentration 

(PNEC) in the environment treats sensitivities of observed species as random sample from the 

ecosystem. At least 10 species, spread over at minimum 8 taxonomic groups, are required for a 

proper SSD. The SSD approach is to fit a SSD to log EC50 values and derive the hazardous 

concentration considering uncertainty from sample size (Aldenberg and Jaworska 2000)(Aldenberg 

and Jaworska 2000)(Aldenberg and Jaworska 2000). Uncertainty in the hazardous concentration 

based on point predictions are derived as the non-central Student-t distribution. The PNEC value is 

then the median of the distribution for the hazardous concentration.  

Experimental Species Data is SSDs are usually taken as fixed, which means that within species 

variability is usually not considered. Individual species data can vary in both in measurement 

uncertainty, or vary in quality as judged by experts, which may be taking into account to improve 

hazard or effect assessment (see e.g. O'Hagan, Craney et al. 2005)(see e.g. O'Hagan, Craney et al. 

2005)(see e.g. O'Hagan, Craney et al. 2005). The added error from using a QSAR prediction compared 

to the experimentally based estimate ought to be considered when combining these kinds of 

information. Here we are concerned with what happens when we are to consider uncertainty in 

QSAR predictions, and in a mixture with experimentally established estimates of species sensitivities. 

We seek an approach to consider uncertainty in QSAR predictions that do not reduce variability in 

species sensitivities. 

First, we conclude that there is a need of some sort of hierarchical modeling. The top level is the 

PNEC which is a statistical property of the SSD, such as the 5th percentile (Aldenberg and Jaworska 

2000)(Aldenberg and Jaworska 2000)(Aldenberg and Jaworska 2000). The second level is the species 

sensitivity which is a random variable with a defined probability distribution (e.g. lognormal). The 

third level is the individual species sensitivities, each associated to a certain amount of uncertainty. 

Here species sensitivity is an EC50 values, which means that within species variability is not modeled. 

Second, we conclude that the derivation of the hazardous concentration is not made through 

inference from data via a probability model since the predictive distributions associated to each 

QSAR predictions are initially given. A straightforward approach is to perform an outer loop using 

Monte Carlo simulation to sample from the predictive distributions and storing the hazardous 

concentration in each iteration. 
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Method 
The influence of uncertainty in QSAR predictions on the PNEC was studied in a simulation 

experiment. Artificial data sets of species sensitivities were created and PNEC values derived by 

Monte Carlo simulation from distributions describing uncertainty in species sensitivities. PNEC was 

the hazardous concentration defined as the median value of the non-central Student-t distribution, 

assuming the underlying SSD to be normal.   

���~�(�, �)     Eq 1 

The sensitivity of an individual species to the chemical in concern Ti (in log units) is assumed to follow 

a normal distribution, 


�~�(��, �)    Eq 2 

where i = 1, …, n is the number of species. 

Artificial data sets were created based on an assumed SSD. Median values for each species are 

created by sampling from the SSD for a given SSD mean (µ) and SSD variation (σ2). A species 

sensitivity described by an experimental value have here no uncertainty and therefore the variance is 

zero (i.e. si = 0 in Eq 2). The amount of QSAR predictions among the sample of n species is defined by 

k. Uncertainty in a species sensitivity represented by a QSAR prediction is assigned equal sized 

variances (i.e. si = s in Eq 2).  

An artificial data set is characterized by the parameters µ, σ, k and s, and were created for n = 10 

species for the purpose of this experiment. The mean value of the SSD was kept constant (µ = 0), as it 

does not affect the influence of sources of variation. Latin Hypercube sampling was performed to 

generate 1000 parameter values within specified ranges (Table 1). An artificial SSD data set is 

illustrated in Figure 1 where five species are represented by QSAR predictions having the same 

variance. The theoretical SSD and hazardous concentration are shown in black.  

Table 1. Specifications for the artificial SSD data sets consisting of 10 species.  

Parameter Description Range 

σ SSD standard deviation (0.01, 4) 

k Number of QSAR predictions 0,1,…,10 

s Standard deviation in QSAR prediction (0.01,4) 

 

For each sample the hazardous concentration was derived with and without considering QSAR 

uncertainty. The hazardous concentration was defined as the median of the 5th percentile in a SSD, 

where the median was taken from the non-central Student-t as described in (Aldenberg and 

Jaworska 2000)(Aldenberg and Jaworska 2000)(Aldenberg and Jaworska 2000). The hazardous 

concentrations with and without considering QSAR uncertainty corresponds to the blue and red 

dotted lines in Figure 1. In the case where QSAR uncertainty is considered, this median value is 

uncertain in itself as the QSAR uncertainty adds variation on another level (as a second order 

uncertainty).  
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The performance of the method to consider QSAR uncertainty was calculated as the reduction in the 

hazardous concentration on a log scale. The comparison was made between the mean value of the 

second order uncertainty to compare with the hazardous concentration when uncertainty in QSAR 

predictions is not considered. 

All calculations were done in R (R Development Core Team 2008) and the code is available in 

Appendix 1.  

 

 

Figure 1. An illustration of the QSAR integrated SSD approach.  

Results and Discussion 
The simulation experiment showed that considering QSAR uncertainty results in a lower hazardous 

concentration, seen as positive performance measures (Figure 2). The influence of QSAR uncertainty 

is reduced with an increasing SSD variability (Figure 2 a), and increases with increasing number of 

species with QSAR predictions (Figure 2 b) and magnitude of uncertainty in QSAR predictions (Figure 

2 c). Besides these rather intuitive results, we can confirm that there was no reduction in SSD 

variability from this way to consider uncertainty in QSAR predictions, i.e. by MC-sampling from 

predictive distributions as an outer loop of the standard SSD approach. 
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Figure 2. Results from the simulation experiment studying the difference between the hazardous 

concentration (median of the 5th percentile in a SSD) with and without considering uncertainty in 

QSAR predictions.  

When the variance in predictive distributions for QSAR predictions are equal or smaller than the 

variance of the SSD, the change in hazardous concentration when considering QSAR uncertainty is 

within two order of magnitude (Figure 3). This difference is larger the more species with QSAR 

predictions in the SSD data set. A simple rule of thumb to consider QSAR uncertainty could be to 

divide the hazardous concentration derived from a SSD derived without considering QSAR 

uncertainty by a factor of 10 (if unlogged, or subtract 1 if on a log scale). A problem is that we do not 

know the variability in the SSD and that can only be determined on the available SSD data set, out of 

which the QSAR predictions are part. The procedure could be to fit an SSD without considering 

uncertainty in QSAR predictions and compare the variance of the fitted SSD to the average variance 

of the QSAR predictions, to judge how large uncertainty factor that is needed. Another option is to 

assess the hazardous concentration considering QSAR uncertainty directly. In Figure 2 we see that 

the influence from QSAR uncertainty is negligible when the variance in the QSAR predictive 

distribution is less than 10 % of the variance in the SSD.  

Conclusions 
Considering QSAR uncertainty in SSD approach in the assessment of PNEC is possible by keeping 

uncertainty in QSAR predictions and SSD variability at different levels comparable to second order 

Monte Carlo simulations.  

Considering QSAR uncertainty generates more conservative hazardous concentrations.  

0 1 2 3 4

0
2

4

a)

SSD std

p
e
rf

o
rm

a
n
c
e

0 2 4 6 8 10

0
2

4

b)

k

p
e
rf

o
rm

a
n
c
e

0 1 2 3 4

0
2

4

c)

s

p
e
rf

o
rm

a
n
c
e moving average



Appendix 7 Deliverable 4.2.  

Working paper CADASTER – do not cite without permission of the corresponding author  page 5 

 

When the average variance in QSAR predictions are less than the variance of the SSD, the added 

conservatism in the assessment of the hazardous concentration correspond to an assessment factor 

of less than 10.  

 

Figure 3. The relation between change in hazardous concentration (Hz) when considering QSAR 

uncertainty and how the magnitude of QSAR uncertainty (QSAR var) relates to the variability in the 

SSD (SSD var), shown for different number of species represented by QSAR predictions among 10 

species in a SSD data set (k).  
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Appendix 1 
#install.packages('lhs') 

library(lhs) 

 

setwd('C:/Users/ulsaaa/Dropbox/wp4_summer/tom/SSDtoDeliverable') 

 

## set up simulation experiment and generate artificial SSD data 

n <- 10 

mu <- 0 

sigma_val <- c(0.01,4) 

k_val <- c(0,10) 

s_val <- c(0.01,4) 

 

minmax <- t(cbind(sigma_val,k_val,s_val)) 

 

nLH <- 1000 

LH <- randomLHS(n=nLH, k=3)  

for(i in 1:3){ 

LH[,i]<-(minmax[i,2]-minmax[i,1])*LH[,i]+minmax[i,1] 

} 

LH[,2] <- round(LH[,2]) 

 

 

 

## function for QSAR integrated SSD 

QSARSSD <- function(sample = array(rnorm(100*3),c(100,3)),x = 5,dist = 

'non.central.t',non.central.t.arg = 50){ 

## x% is the percentile 

## sample is a matrix of samples from diferent species (columns) 

## dist = c('normal','t','non.central.t') 

## the use on non.central.t requires an additional argument which is the percentle of the resulting 

distribution given in percent 

 

if(dist == 'normal'){ 

Hx <- qnorm(x/100,apply(sample,1,'mean'),sqrt(apply(sample,1,'var'))) 

}else if(dist == 't'){ 

Hx <- qt(x/100,dim(sample)[2])*sqrt(apply(sample,1,'var'))+apply(sample,1,'mean') 

}else if(dist =='non.central.t'){ 

##it provides the non.central.t.arg percentile of the Hx seen over unc from small sample size in the 

model 

##calculate directly and follows tabulated values in Aldenberg and Jaworska 2000 

kp <- -qnorm(x/100) 

n <- dim(sample)[2] 

ks <- qt(non.central.t.arg/100,n-1,ncp = kp*sqrt(n))/sqrt(n) 

Hx <- apply(sample,1,'mean')-ks*sqrt(apply(sample,1,'var')) 

} 

#option of other distributions here 

#H.out <- cbind(Hx,sample) 

#return(H.out) 

return(Hx) 

} 
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N <- 1000 

Hx <- array(0,c(N,nLH,2)) 

sample <- array(0,c(N,n)) 

sample.nounc <- sample 

for(ind in 1:nLH){ 

#artifical 

for(i in 1:n){## n is the number of species 

sample.nounc[,i] <- array(rnorm(1,0,LH[ind,1]),c(N,1)) 

if(i > LH[ind,2]){ 

sample[,i] <- sample.nounc[,i] 

}else{ 

sample[,i] <- sample.nounc[,i]+rnorm(N)*LH[ind,3] 

}#end if 

}#end i 

Hx[,ind,1] <- QSARSSD(sample) 

Hx[,ind,2] <- QSARSSD(sample.nounc) 

}#end ind 

 

### Performance measure  

per <- apply(Hx[,,2]-Hx[,,1],2,'mean')  

 

### Figure 2 

k <- 50 

par(mfrow = c(2,2)) 

plot(LH[,1],per,xlab = 'SSD std',ylab = 'performance',col = 'gray',main = 'a)') 

MA <- filter(per[sort.int(LH[,1],index = TRUE)$ix],rep(1, k),method = "convolution",sides = 2)/k 

lines(sort(LH[,1]),MA,col = 'red') 

 

plot(LH[,2],per,xlab = 'k',ylab = 'performance',col = 'gray',main = 'b)') 

MA <- filter(per[sort.int(LH[,2],index = TRUE)$ix],rep(1, k),method = "convolution",sides = 2)/k 

lines(sort(LH[,2]),MA,col = 'red') 

 

plot(LH[,3],per,xlab = 's',ylab = 'performance',col = 'gray',main = 'c)') 

MA <- filter(per[sort.int(LH[,3],index = TRUE)$ix],rep(1, k),method = "convolution",sides = 2)/k 

lines(sort(LH[,3]),MA,col = 'red') 

 

plot(c(0,1),c(0,1),col = 'white',axes = FALSE,xlab = '',ylab = '') 

legend('topleft','moving average',col = 'red',lty = 1,bty = 'n') 

 

### Figure 3 

LHtemp <- log10(LH[,3]^2/LH[,1]^2) 

sel <- LH[,2]>0 

temp <- LHtemp[sel] 

pertemp <- per[sel] 

plot(temp,pertemp,xlab = 'log 10(QSAR var/SSD var)',ylab = 'log10(Hz difference)',col = 'gray') 

 

sel <- (LH[,2]>0 & LH[,2]<=5) 

temp <- LHtemp[sel] 
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pertemp <- per[sel] 

MA <- filter(pertemp[sort.int(temp,index = TRUE)$ix],rep(1, k),method = "convolution",sides = 2)/k 

lines(sort(temp),MA,col = 'red') 

 

sel <-  (LH[,2]>5 & LH[,2]<8) 

temp <- LHtemp[sel] 

pertemp <- per[sel] 

MA <- filter(pertemp[sort.int(temp,index = TRUE)$ix],rep(1, k),method = "convolution",sides = 2)/k 

lines(sort(temp),MA,col = 'blue') 

 

sel <-  LH[,2]>=8  

temp <- LHtemp[sel] 

pertemp <- per[sel] 

MA <- filter(pertemp[sort.int(temp,index = TRUE)$ix],rep(1, k),method = "convolution",sides = 2)/k 

lines(sort(temp),MA,col = 'black') 

legend('topleft',c('0<k<=5','6<=k<=8','9<=k<=10'),col = c('red','blue','black'),lty = c(1,1,1),bty = 'n') 

abline(v = 0,lty = 2) 

 

### test the effect of each factor 

fit <- lm(per ~ poly(LH, 2, raw=TRUE)) 

summary(fit) 

fit <- lm(per ~ LHtemp+LH[,2]) 

summary(fit) 

 

 

 

 

 

#### Figure 1 

 

ind <-12 

n <- 10 

sample <- array(0,c(N,n)) 

sample.nounc <- sample 

for(i in 1:n){## n is the number of species 

sample.nounc[,i] <- array(rnorm(1,0,LH[ind,1]),c(N,1)) 

if(i > LH[ind,2]){ 

sample[,i] <- sample.nounc[,i] 

}else{ 

sample[,i] <- sample.nounc[,i]+rnorm(N)*LH[ind,3] 

}#end if 

}#end i  

Hx <- QSARSSD(sample,non.central.t.arg = 50) 

Hx.nounc <- QSARSSD(t(array(apply(sample,2,'mean'),c(n,2))),non.central.t.arg = 50) 

 

sind <- sort.int(apply(sample,2,'mean'),index.return = TRUE)$ix 

plot(range(Hx,sample,qnorm(0.01,0,LH[ind,1]),qnorm(0.999,0,LH[ind,1])),c(0,1),col = 'white',xlab = 

'species sensitivity',ylab = 'cdf') 

 

lines(sort(Hx),(1:length(Hx))/length(Hx),col = 'red',lty = 3) 

lines(qnorm(seq(0.01,0.99,0.01),0,LH[ind,1]),seq(0.01,0.99,0.01),lty = 2,col = 'black') 
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lines(qnorm(seq(0.01,0.99,0.01),mean(apply(sample,2,'mean')),sqrt(var(apply(sample,2,'mean')) )), 

seq(0.01,0.99,0.01),col = 'blue',lty = 2) 

 

abline(v = Hx.nounc[1],col = 'blue',lty = 1) 

abline(v = qnorm(0.05,0,LH[ind,1]),col = 'black',lty = 1) 

points(sort(apply(sample,2,'mean')),(1:n)/n-0.5/n) 

for(i in 1:n){ 

lines(quantile(sample[,sind[i]],probs = c(0.025,0.975)),rep(i-0.5,2)/n,col = 'red',lty = 1) 

} 

 

legend('bottomright',c('SSD','fitted SSD','predictive uncertainty','Hz','Hz fitted','Hz with QSAR unc'), 

col = c('black','blue','red','black','blue','red'),lty = c(2,2,1,1,1,3),bty = 'n') 


